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University of California, Berkeley
Physics H7B Spring 1999 (Strovink)

SOLUTION TO PROBLEM SET 8

1. (Taylor and Wheeler problem 27)
The clock paradox, version 1.
On their twenty-first birthday, Peter leaves his
twin Paul behind on the earth and goes off in
the x direction for seven years of his time at
24/25 the speed of light, then reverses direction
and in another seven years of his time returns
at the same speed. [In this most elementary
version of the problem, we assume that the nec-
essary periods of acceleration are infinitesimal
in duration, requiring Peter’s acceleration to be
infinite. Nonetheless, our plucky twin remains
uninjured.]
(a.)
Make a spacetime diagram (ct vs. x) showing
Peter’s motion. Indicate on it the x and ct coor-
dinates of the turn-around point and the point
of reunion. For simplicity idealize the earth as
an inertial frame, adopt this inertial frame in the
construction of the diagram, and take the origin
to be the event of departure.
(b.)
How old is Paul at the moment of reunion?

Solution:
On a spacetime (ct vs. x) diagram in Paul’s
(unprimed) frame, Peter begins at (0,0) and
proceeds with slope β−1 = 25

24 for a time interval

c∆t = γc∆t′ + γβ(∆x′ = 0)
= γc∆t′

=

√
1

1− (
24
25

)2 c∆t′

=
25
7

c∆t′

= 25 lightyr .

At Peter’s point of maximum excursion, (ct =
25, x = 24) lightyr. Peter then returns with
slope β−1 = − 25

24 , reaching x = 0 at ct = 50
lightyr where he reunites with Paul. Peter has
aged only 14 years, while Paul has aged 50 years
(and has reached the age of 71).

2. Prove that

tanh (η1 + η2) =
tanh η1 + tanh η2

1 + tanh η1 tanh η2
.

Using this relation, deduce Einstein’s law for the
addition of velocities.

Solution:

tanh η =

=
exp (2η)− 1
exp (2η) + 1

tanh η1 + tanh η2 =

=
exp (2η1)− 1
exp (2η1) + 1

+
exp (2η2)− 1
exp (2η2) + 1

=
2 exp (2η1 + 2η2)− 2

exp (2η1 + 2η2) + 1 + exp (2η1) + exp (2η2)
tanh η1 tanh η2 =

=
exp (2η1 + 2η2) + 1− exp (2η1)− exp (2η2)
exp (2η1 + 2η2) + 1 + exp (2η1) + exp (2η2)

1 + tanh η1 tanh η2 =

=
2 exp (2η1 + 2η2) + 2

exp (2η1 + 2η2) + 1 + exp (2η1) + exp (2η2)
tanh η1 + tanh η2

1 + tanh η1 tanh η2
=
2 exp (2η1 + 2η2)− 2
2 exp (2η1 + 2η2) + 2

= tanh (η1 + η2) .

Suppose that all velocities are in the x direc-
tion. Take the velocity of frame S1 with respect
to frame S to be β1c; of frame S2 with respect
to frame S1 to be β2c; and of frame S2 with re-
spect to frame S to be β3c. β1,2,3 correspond to
boost parameters (or rapidities) η1,2,3 according
to the relation

β1,2,3 = tanh η1,2,3 .

The boost parameters have the unique property
that they are additive, i.e. a boost of η1 fol-
lowed by a boost of η2 is equivalent to a boost
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of η1 + η2. So, with the above definitions,

η3 = η1 + η2

β3 = tanh η3

= tanh (η1 + η2)

=
tanh η1 + tanh η2

1 + tanh η1 tanh η2

=
β1 + β2

1 + β1β2
.

This is Einstein’s law for the addition of veloci-
ties.

3. The thermonuclear “deuterium-tritium” re-
actions are:

2H+ 2H→ 3He + n
2H+ 2H→ 3H+ p
2H+ 3H→ 4He + n .

These sum to

5(2H)→ 3He + 4He + p+ 2n.

Using the following masses in AMU,

(proton) p 1.007825
(neutron) n 1.008665

(deuteron) 2H 2.014102

(helium 3) 3He 3.016030

(triton) 3H 3.016050

(alpha particle) 4He 4.002603 ,

calculate (to 5%) the kinetic energy released
when one liter of heavy water (2H)2O undergoes
deuterium-tritium fusion in an H-bomb. Express
your answer in terms of tons of TNT (1 ton of
TNT = 4.2×109 J of explosive energy).
Solution:
The energy released in the summed reaction
corresponds to a mass deficit equal to ∆m =
5(2.014102) − 3.016030 − 4.002603 − 1.007825
− 2(1.008665) = 0.026722 amu. Heavy water
has a density about 20

18 times that of ordinary
water, due to the extra two neutrons. Thus
one liter of heavy water weighs 1.11 kg and
corresponds to 1.11

20 × 103 = 55.5 moles. It

contains 55.5 × NAvo = 55.5 × 6.023 × 1023 =
3.35 × 1025 molecules of heavy water. Each of
the summed reactions requires five deuterium
nuclei, or 2.5 molecules of heavy water, so 3.35×
1025/2.5 = 1.34 × 1025 summed reactions take
place. The mass energy in one amu is equivalent
to mc2 = 0.9315 × 109 eV, or, with 1 eV =
1.6×10−19 J, 1.49×10−10 J. Therefore the energy
released is 0.026722×1.34×1025×1.49×10−10 =
5.33 × 1013 J. This is equivalent to the energy
released by the explosion of 12.7 kilotons of TNT.

A corollary is that about 80 liters – one
Jeep gasoline tank – of (2H)2O are needed to
make a one megaton H-bomb. This sets a lower
limit on the degree to which an H-bomb can be
miniaturized, irrespective of any espionage.

4. The universe is filled with old cold photons
that are remnants of the big bang. Typically
their energy is ≈ 6.6× 10−4 eV.

A cosmonaut who is accelerated at 1 g for
10 years in her own rest frame attains a boost
(= arctanhβ) of 10.34. As seen by her, what is
the typical energy of these photons?

Solution:
We know that the energy-momentum four-vector
(E/c,p) satisfies the same Lorentz transfor-
mation equations as the spacetime four-vector
(ct, r):

E′/c = γE/c − γβpx

p′x = −γβE/c+ γpx

p′y = py

p′z = pz ,

where the cosmonaut (in the primed frame) is
assumed to be travelling with respect to the
big bang’s (unprimed) frame with a velocity
βc = tanh 10.34 in the x direction. [With re-
spect to this large velocity, here we are neglect-
ing the much smaller speed of 370 km/sec with
which the solar system moves with respect to
the big bang radiation; this was first measured
by a Berkeley group, including Profs. Smoot and
Muller, in the 1970s.]
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On average, 〈px〉 = 0 for the big bang pho-
tons in the big bang’s frame; thus

〈E′/c〉 = γ 〈E/c〉

=
√

1
1− β2

〈E/c〉

=

√
1

1− tanh2 η
〈E/c〉

= 〈E/c〉 cosh η

= 6.6× 10−4 eV/c × cosh 10.34
E′ = 10.2 eV .

Therefore, while the cosmic background radia-
tion is in the far infrared as seen in the solar
system, on average it is boosted to the ultraviolet
as seen in the frame of the cosmonaut.

5. Prove that an isolated photon (zero mass)
cannot split into two photons which do not both
continue in the original direction.

Solution:
Assume that a photon decays into two other
photons a and b. The photons have energy-
momentum four-vectors denoted by (E/c,p),
(Ea/c,pa), and (Eb/c,pb), repectively. Both
energy and momentum must be conserved in the
decay. We can express this requirement in a
single four-component equation:

(E/c,p) = (Ea/c,pa) + (Eb/c,p)b) .

To save writing we will use the shorthand no-
tation p ≡ (E/c,p); similarly for pa and pb.
Rewriting the above equation in this shorthand
notation, and taking the inner product of each
side with itself,

p = pa + pb

p · p = (pa + pb) · (pa + pb)
= pa · pa + pb · pb + 2pa · pb .

In the above, the symbol “·” refers to the four-
vector inner product, i.e. p · p ≡ E2/c2 − p · p .
Since the inner product of any two four-vectors
has the same value in any Lorentz frame, it is
easiest to evaluate p · p in the rest frame of the
particle; there one finds that

p · p = E2/c2 − |p|2 = m2c2 ,

where m is the particle’s rest mass. This is
the fundamental equation for solving relativistic
kinematics problems. The fundamental equation
tells us that p · p = 0 and |p| = E/c for any
massless particle like the photon. Returning to
the problem,

p · p = pa · pa + pb · pb + 2pa · pb

0 = 0 + 0 + 2EaEb/c2 − 2pa · pb

= 2EaEb/c2(1− cos θab)
1 = cos θab ,

where θab is the opening angle between the two
photons. The last equation tells us that photons
a and b must be travelling in the same direc-
tion (they are “collinear”); by conservation of
momentum, that must be the direction of the
initial photon.

[For the case in which photons a and b
do travel in the direction of the initial pho-
ton, which is allowed by the above kinematic
calculation, the decay nevertheless is prevented
by conservation of angular momentum. Angu-
lar momentum nonconservation in the collinear
decay arises from the photon’s internal angular
momentum (“spin”).]

[Also, we note that the (electrically neutral)
photon couples to electric charge, so, to low-
est order, no electromagnetic interaction occurs
when three photons meet at a common vertex.
This is not the case for the strong force carriers
(gluons), which also are massless; gluons both
carry and couple to a different kind of charge
called “color”.]

[How could we express the above solution
in words? “If the two decay photons are not
collinear, their combined invariant mass must
be greater than zero. Since the initial state
has invariant mass equal to zero, this violates
energy-momentum conservation.”]

6. The now retired Bevatron at Berkeley
Lab is famous for having produced the first
observed antiprotons (you may have glimpsed
white-maned Nobelist Owen Chamberlain, one
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of the first observers, being helped to his seat at
Physics Department colloquia). An economical
reaction for producing antiprotons is

p+ p → p+ p+ p+ p̄ ,

where the first proton is part of a beam, the
second is at rest in a target, and p̄ is an antipro-
ton. Because of the CPT theorem, both p and
p̄ must have the same mass (= 0.94× 109 eV).
At threshold, all four final state particles

have essentially zero velocity with respect to
each other. What is the beam energy in that
case? (The actual Bevatron beam energy was
6× 109 eV).
Solution:
We shall use the notation of the previous solu-
tion. Denote by pa and pb the four-momenta of
the incident and target protons, each of which
has mass m. At threshold, we are told that
the four final-state particles are at rest with re-
spect to each other. Therefore, for kinematic
purposes, they are equivalent to a single particle
of mass 4m. Denote by pc the four-momentum
of this four-particle state. Energy-momentum
conservation demands

pa + pb = pc

(pa + pb) · (pa + pb) = pc · pc

pa · pa + pb · pb + 2pa · pb = pc · pc

m2c2 +m2c2 + 2pa · pb = (4m)2c2

7m2c2 = pa · pb

= (Ea,pa) · (m,0)
= Eam

Ea = 7mc2

= 7× 0.94× 109 eV
= 6.58× 109 eV .

This is ∼ 10% more proton beam energy than
the Bevatron (= 6×109 GeV) was able to supply!
How then were Chamberlain, Segrè, Wie-

gand, and Ypsilantis able to discover the an-
tiproton at the Berkeley Bevatron in 1956? They
took advantage of the fact that protons con-
fined inside the atomic nucleus have a significant
(∼ 200 MeV/c) rms momentum as a result of

Heisenberg’s uncertainty principle. This is called
“Fermi momentum”. When the target proton’s
Fermi momentum is directed against the incom-
ing beam proton, the energy available for the
interaction can be augmented up to ≈ 20%.
7. Using Eqs. 1.33 in the lecture notes, prove
that E2 − B2, where E (B) is the magnitude of
the electric (magnetic) field, is a Lorentz invari-
ant.

Solution:
The equations for Lorentz transformation of the
electric field E and magnetic field B may be
derived from three facts:

(φ,A) = a four vector

E = −∇φ − 1
c

∂A
∂t

B = ∇×A ,

where φ is the scalar potential and A is the vec-
tor potential. The result of the derivation is
Eq. 1.33 in the distributed relativity notes:

E′
⊥ = γ(E⊥ + β ×B⊥)
B′

⊥ = γ(B⊥ − β ×E⊥)
E′

‖ = E‖

B′
‖ = B‖ ,

where βc is the velocity of frame S ′ relative to
S, the subscript ⊥ refers to the component per-
pendicular to β, and the subscript ‖ refers to the
component parallel to β. Note that, in the first
two equations, the subscript ⊥ may be dropped
from the last term, since taking the cross product
with β automatically picks out the perpendicu-
lar part. Using the first two equations,

γ−2(E′
⊥)

2 = E2
⊥ + β2B2

⊥ + 2E⊥ · (β ×B⊥)

γ−2(B′
⊥)

2 = B2
⊥ + β2E2

⊥ − 2B⊥ · (β ×E⊥) .

We rearrange the last line using the invariance
under cyclic permutation of the triple product:

a · (b× c) = b · (c× a) = c · (a× b) ,

a relation which may be found on the inside
cover of Griffiths (distributed in class), or, more
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physically, may be understood from the fact that
the triple product describes the (invariant) vol-
ume of a parallelopiped with sides a, b, and c.
Cyclically permuting the triple product in the
last line,

γ−2(B′
⊥)

2 = B2
⊥ + β2E2

⊥ − 2E⊥ · (B⊥ × β)

= B2
⊥ + β2E2

⊥ + 2E⊥ · (β ×B⊥)

E′2
⊥ − B′2

⊥
γ2

= E2
⊥ + β2B2

⊥ − B2
⊥ − β2E2

⊥

= (1− β2)(E2
⊥ − B2

⊥)

E′2
⊥ − B′2

⊥ = E2
⊥ − B2

⊥ .

This demonstrates that E2
⊥ − B2

⊥ is conserved;
E2

‖ − B2
‖ is conserved automatically since E‖

and B‖ are invariant under the transformation.
Finally, E2 = E2

⊥ + E2
‖ , etc., because the dot

product in the cross term vanishes.

8. You shine a one-watt beam of photons on a
crow, who absorbs them. Calculate the force (in
N) on the crow.

Solution:
Suppose that a photon in the flashlight beam has
an energy E. Then it must have momentum p =
E/c. The beam power (= 1 W) is P = N〈E〉,
where N is the number of photons emitted per
second and 〈E〉 is their average energy. If the
photons are totally absorbed by the crow, the
momentum absorbed by the crow per second is

F = N〈p〉 = N〈E〉/c = P/c .

Therefore the force F on the crow is

F =
1 W

c
= 3.3× 10−9 N .


